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The Dominant Cutoff Wavelength of a Lunar Line*

A. Y. HU~, MEMBER, IRE, AND A. ISHIMARU$, MEMBER, IRE

Summary—A method is presented for calculating the lowest

cutoff wavelength of a new microwave transmission line, the “lunar

line, ” which is formed by two eccentric circular metal tubes con-

necte d with a metal bar or tangential to each other. The ltmar-

shaped cross section is approximated by introducing a series of steps

in the outer guide wall and by dividing the cross section into m fan-

shape regions. Thus, the problem is reduced to one of a multiple-

step waveguide and can be solved by introducing the angular param-

eter cw for the individual regions. The radial boundary conditions
require a combination of Bessel functions of noninteger order for

each region. The common boundaries between regions give m in-

tegral equations that represent the total power in one region trans-
ferred into the next region. The integral equations are solved ap-

proximately by solving only the first terms of an infinite series ex-
pansion of the tangential electric field at the common boundary. The
solution of the m-stepped waveguide results in a system of 2m

equations containing 2m unknowns: the cutoff wave number p., the

order of the Bessel function pi, and the angular parameter LW A suc-
cessive approximation method is applied to obtain the cutoff

wavelength. The calculated value is in close agreement with experi-

mental results.

1. INTRODUCTION

I

N 1959 a new microwave transmission line, the

“lunar line, ” was developed at The Boeing Airplane

Company. The lunar line is an eccentric version of

Schelkunofi’s coaxial cylinders with a radial baffle’ and

is formed by two eccentric circular metal tubes which

are either connected with a metal bar or are tangential

to each other (Figs. 1 and 2). The cutoff frequency of

the lunar line is lower than that of circular or coaxial

waveguides with the same outside diameter, propagat-

ing TE1l mode. Its low impedance and wide bandwidth

characteristics may make it useful as a transmission

line, a filter, a cavity, or a feeder for an array of slot an-

tennas.

Conventional methods of determining the cutoff

wavelength cannot be applied to lunar line because of

its complicated cross section. In 1958 1ashkin2–4 pro-

posed a new method for determining the dominant cut-

off frequencies of waveguides with triangular and
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Fig. l—Photograph of a lunar liue.

P.= 1.8955 inches PO= O.8125 inches

Fig. 2—Cross section of a lunar line.

trapezoidal cross sections. He approximated the cross

section with a series of steps and introduced new angu-

lar parameters cu which reduced the problem to a

simple system of equations. However, because his solu-

tion is restricted to a waveguide which can be approxi-

mated by mtrltistepped rectangular regions, it cannot

be applied directly to the lunar line which has circular

boundaries.

In this paper, Iashkin’s method is extended to wave-

guides with circular boundaries. A system of equations

involving the cutoff wave number ~., the order of the

Bessel function pi, and the angular parameter CU, is ob-

tained and solved approximately. The numerically cal-

culated cutoff wavelength of the lunar line is in close

agreement with experimental results.

II. STATEMENT OF THE PROBLEM

Consider the lunar line with the cross section shown

in Fig. 2. It is assumed that only the dominant TE mode

is propagating, and that the guide wall is perfectly con-

ducting. The z component of the magnetic field, Hz,

perpendicular to the cross section of the lunar line,
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satisfies the two-dimensional wave equation

dHz
(V? + 6.’)H. = O; ; = O on the boundary, (1)

where v ~ i~ the gradient operator transverse to the z

axis, ~, is the cutoff wave number, and the cutoff

wavelength is given by h.= (27r/(3,).

1 I I. .{ PPROXIM.4TION BY lL1 ULTISTEPPED lLEGIONS

With conventional methods, it is not possible to ob-

tain an exact solution for (1) when ~it pertains to the

lunar shaped region shown in Fig. 2’. An approximate

solution can be obtained by deforming the outer bound-

ary of the cross section into a series of steps (Fig. 3). If

the deformations are not large and have alternate signs,

their effect will be negligible, and the cutoff wave-

length of the original lunar line will be approximately

the same as that of a waveguide with a multistepped

cross section. Thus, the problem is reduced to one of

finding the cutoff wavelength of the multistepped

waveguide. The precision of the calculated cutoff wave-

length depends on the number of steps in the cross sec-

tion.

IV. SOLUTION BY N’[EANS OF THE PARAMETERS et,

The lunar line shown in Fig. 3 is deformed by eighteen

fan-shape regions. Because of their symmetry about

@ = ~, only nine of the eighteen regions must be con-

sidered. For a cylindrical coordinate system, the ith

region is defined by

where

i=l,2, ...9.

The solution of (1) for each region is5

cc

27s, = ~ Ci.Zp,n (/3.fJ)COS~in(~ — ~in), (2)
??=l

where @ is the order of the Bessel function and C is the

coefficient of the series solution. The function 2P repre-

sents the following combination of Bessel functions:

Applicai-ion of the bou’ndary condition yields

dH,L
= O, or ZPi~ ‘(lip,) = O (4)

dp P=P.

5 N. Marcuvitz, “Waveguide Handbook, ” McGraw-Hill Book
Co., Inc., New York, N. Y., pp. 66-80; 1951.
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PT= 1.68 inches 47= 140”
P8= 1.81 inches @s= 160°
pg = 1.86 inches 49= 180°

Fig. 3—Cross section of an 18-stepped form of a lunar line.

and

i?H,l
= O, SO ffin = O.

8+ ,$=0
(5)

The fields must be continuous across the com-

mon boundary between

(po~p~l%, @ ‘+,) ; thus

the i and the i+- 1 regions

— ~in )

= E C,i+lz,(,+,). (i&P) COS P,t+un @i - ~ti+unl (6)[n,=1

and

~ C,nl ~inz.im (LP) sin $in(+i - ~J

n= 1 P

= 5 C(i+l)n+P(i+l)zp(i+l)n [(LP) sin flfi+un @i - CXti+l,n 1~=1

= @;(p). (7)

The unknown function Q,(p) is the radial electric field

of the ith region. Expressed in a series form, @i(p) is

The first approximation may be obtained

first term of the expansion

zPin(lLP)
@t(p) = Dil

P

(8)

by taking the

(9)
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The function Z.,n has the following properties:6

sP;

-z,ln (LP)ZP,MCP) ~ = 0, for ?2 # V,

Po P

s

P,

.zPin2(PCP) ~ = ~ [Ln (Pi) - ~,in (PO)]
Po P 2Pi~

MICROWAVE THEORY

Substituting

gives

AND TECHNIQUES November

(9) and (14) into (15) and integrating

(lo)

for u = V. (11)
= & ,;::;:;:;:-l:’:;’;:O1l

The functions ZP,~ are orthogonal in ith region. This
A . .

orthogonality property can be used to determine Ci.

and C(~+l)n from (7) in terms of the integral involving . J PcPtzPL,(PcPt)z’P(L+l)n(8cPz) 2

[ 1}
(16)

the @(p) function. Thus \ (Al)’ – P’(L+I)7Z “

(13)

2
s

“ W)zpln(ocw

Cin =
00

(12)

sin Pin(@ – ~i.) [~pln (PJ — ~pin (Po) 1‘

s

PZ+l

2 @t+l(t)z#(,+,)n(Pct)~i

C(l+l)r, =
Do

{ sin P(+II.[4 - CYi+In 1){L(L+,,JP(2+1)I- ~wL+l,,L(Po)l “

Substituting Ci. and C(~+l). into (6) and simplifying

yields the following integral equation:

COt ~in(+ – ~in) f “ ‘t(t)zp,n (BC&)zP1n (8CP)d&

5
‘ Po

,,=1 12,,, (P,) – Ipin (Po)

- sPi+l

cot P(t+l)n[ot – ~(t+l)n] %+1(.$)ZP (,+1 ),, (fwz(,+l)n (6.P)4
m

on
(14)

The limits of the right side of the integral in (14) are

PO+Pi+I, but at 4 =C#Uand at pi 5P SP,+l, the function

O(g) = dlZZ/dn = O. Therefore the limits change to

PO-P,.

Eq. (14) is an integral equation for the unknown

function @(~) and insures the continuity of the z com-

ponent of the magnetic field at the boundary. There-

fore, the unknown functions 0,($) and @t+i(~) are equal

at the common boundary, and the function @i($) is

used for a small region.

The equation which determines the cutoff wave num-

ber can be obtained by multiplying both sides of (14)

by Q,(p) and by integrating over the boundary pO to p,.

Since @i(p) is the tangential electric field and both

sides of (14) are the z component of the magnetic field,

this procedure insures that the total power of the ith

region will be transferred into (;+ 1) th region, that is

J

0{

s

P:

o,(p) Hz,(p)dp = @!(P) Hz(.+,)(P)dP. (15)
Po Po

6 G. N. Watson, “A Treatise on the Theory of Bessel Functions, ”
Cambridge IJniversity Press, Cambridge, Eng., p. 135; 1958.

Between region 9 and 10, (16) is reduced to

cot p::-:,); a“) [Ip,l (P,) – lP,, (PO)]= 0, (17)

since

pg = plo, and Z’P ,0.(LP9) = Z’PIOJLPIO) = 0.

Substituting ~0 = r into (17) gives

491(7T – of91) = ~, or

T

C/91 =7r — — . (18)
2p91

At the boundary ~ = T, the field E x dHz/p&# is sym-

metric and the field H, is zero. Thus, for the region

represented in Fig. 3, a system of equations is obtained

which consists of nine equations of type (4), eight

equations of type (16), and one equation of type (18).

Generally it is not possible to solve these equations be-

cause an infinite number of ~i. and Pi. must be ~eter-

mined. However, it is shown in Section V that (4) ad-
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mits only one positive real root p~l, and the rest of the

roots are complex. The parameters Pil and a,l represent

the dominant TE1l propagating mode. Therefore, an ap-

proximate solution is obtained by neglecting all of the

nonpropagating modes. This approximation reduces the

series in (16) to one term. Thus, eighteen equations of

type (4), (16) and (18) contain eighteen unknown quan-

tities /3., a2, “ “ “ ag, (drop the subscript one of aJ and

411, “ “ “ P91.

To solve for /3., assume an appropriate value of ~.

and substitute this value into (4), (16) and (18) for cal-

culating ag. Two ag parameters are obtained for each

@Cvalue. When the assumed value of f?c increases, the

value of m from (16) decreases and the value of ag from

(18) increases. Therefore, the true value of /3c can be de-

termined graphically from the point where the value of

these two ag are equal.

1’. SAMPLE CALCULATION OF THE CtTTOFF

WAVELENGTH OF A LUNAR LINE

in order to choose some appropriate value of @,, a

simplified case is first considered. Then the value of /3,,

is varied near the chosen value to obtain the true ~c.

1n the deformation from the lunar-line cross section,

to a one-stepped, fan-shape region, the approximate

cutoff wave number may be chosen as

2T
& = = 0.70. (19)

2(paverage x 190°)

The fan-shape is stretched to form a rectangular wave-

guide, and the dimension a is p~.,,~,. X 190°; therefore,

the cutoff wavelength is 2a.

Substituting ~,= 0.70, into nine equations of type

(4) and using the Bessel Function recurrence relations,

gives

L ( [J@,n-@Jo) – JP,”+I(BCPO)lZp, ‘(PCPJ = 4 I
m

. [Npin_@cPJ – .vpin+l(/iPJl

– [Np,,,-l(ho) – .vp,,,+@cPo)l

[Jp(fl.p,) - JP,,,+I(BC,OL)] ] . (20)

The ZP’,~(~.p J functions are symmetrical with respect

to the p;= O; therefore, the equation ZP’iD(/3,,pJ = O has

one positive root, and must have an equal negative root,

Since Hz is symmetric with respect to the ~~i = O, only

the positive root pin needs to be considered.

The values (if,po and f?,pi are too small to be corlsid-

ered with the ordinary approximate formula for the

large argument Bessel Functions. However, because the

series form of these Bessel Functions converges rather

rapidly, the finite terms are used for approximate com-

putations to obtain the roots pi and the parameters ai

of each ~. value.

The graphical method is used to plot the function

A,.’ (P.P i) against Pi (Fig. 4 shows 4 %’ (LPI) vs the PI

curve) and the root, Pu, of (4) is 0.625. Similarly the

roots p!l . . . 991 can be obtained. They are

j,, = 0.62.5 p,, = 0.803

p,, = 0.648 Pv, = 0.849

p,, = 0.673 p,, = 0.886

p,, = 0.708 p~I = 0.899.

p,, = 0.7501 (21)

The curve in Fig. 4 shows only one positive real root.

It is difficult to find complex roots of the equation

Z,,n’ (~,p,) = O for a small argument. However, the high

modes of the field, H., are assumed to attenuate very

quickly. Substituting P,, w = O and nine Pil roots into

eight equations of type (16), az through as are obtained:

ag is 1.1832. If pgl is substituted into (18), the result,

ag = 1.3943, is different from that obtained by comput-

ing equations of type (16). Therefore, the value ,8, = 0.70

does not satisfy this system of eighteen equations. How-

ever, if it is assumed that P.= 0.64 and ~,= ~0.67, and a

parameters are computed using the same procedure as

that used to compute P.= 0.70, the data listed in Table

I result.

When ~.= 0.67, the cu computed from equations of

type (16) ancl that computed from (18) are close, there-

fore f?. = 0.67 satisfies the system of eighteen equations.

However, other lower values of & have been computed

in which the two ag parameters are different. Therefore,

&=O.64
—

‘i /3.Pi 6,1 at

o
1
2
3
4
5
6

:
9*
9f

0.52
0.6272 0.571 0
0.6656 0.592 0.1365
:; ;;:; 0.617 0.2673

0.649 0.4371
0.8704 0.687 0.6591
0.9792 0.735 0.9180
1.0752 0.777 1.1512
1.1584 0.813 1.3611
1.1904 0.829 1.5744

1.2468

TABLE I

COMPUTING al PAswn3m3R

L3.=0.6’/

6’PL al

0.544375
0.6566 0.599
0.6968 0.621
0.7504 0.642
0.8241 0.677
0.9112 0.718
1.0251 0.771
1.1256 0.814
1.2127 0.851
1.2462 0.863

a,
—

o
0.1087
0.1735
0.4787
0.7534
1.0161
1.1657
1.2935
1.3363
1.32144

0.56875
0,686
0.728
0.784
0.861
():);;

1.176
1.267
1.302

0.625
0.648
0.673
0.708
0.7501
0.803
0.849
0.886
0.899

0
0.122!5
0.2234
0.4394
0.6874
0. 934L2
1.1096
1.1872
1.1832
1.3943

* ag computing from type (16) equations.
I a, computing from (18).
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Fig. 4—4Z’jJIJ&@I) vs I% curl-p

(3. =O.67 is the dominant cutoff approximate \vave

number of the experimental lunar line. The calculated

value is in close agreement with experimental results.

V1. EXPERIMENTAL RESLTLTS

The lunar line used in the experiment was formed by

two eccentric circular metal tubes, connected with a

metal bar (Fig. 1). The waveguide wavelength of the

lunar line was measured by the slotted section, audio-

modulated signal source method. A crystal detector

from an HP Model 805 B slotted line was used to meas-

ure the free space wavelength L The crystal detector

frolm the lunar line was used to measure the waveguide

wavelength h,. The distance between two adjacent

minimum positions indicated on the VSWR meter is

equal to half a wavelength. The mean value &/2 was

taken as the average of four such readings. The ends of

the lunar line were terminated in adjustable short cir-

cuits. Care was taken in adjusting the position of these

short circuits to obtain a resonant standing wave distri-

bution within the lunar line cavity at the measuring fre-

quency.

The experimental result of an average cutoff wave-

length of the lunar line is 9.577 inches, the cutoff wave

number @, is 0.6561.

Using the same method, the waveguide wavelengths

of circular and of coaxial waveguides were measured for

comparison.

For a circular waveguide of radius, a = 1.435 inches,

a waveguide wavelength Ag = 8.52 inches was measured

at a frequency of 2800 NIc. The experimental cutoff

wavelength & is 4.84 inches. For a coaxial waveguide,

whose outer conductor radius a is 1.435 inches and

whose inner conductor radius b is 0.8125 inch, a wave-

guide wavelength of X,= 8.56 inches was measured at a

frequency of 2200 Mc. The experimental cutoff wave-

length & is 6.8 inches. The experimental results are in

close agreement with the calculated value of cutoff

wavelengths for circular and coaxial waveguides. The

dominant cutoff wavelength of a lunar line is lower

than that of circular and coaxial waveguides having the

same outside diameter.
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