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The Dominant Cutoff Wavelength of a Lunar Line’

A. Y. HUY, wemBER, RE, AND A. ISHIMARU}, MEMBER, IRE

Summary—A method is presented for calculating the lowest
cutoff wavelength of a new microwave transmission line, the “lunar
line,” which is formed by two eccentric circular metal tubes con-
nected with a metal bar or tangential to each other. The lunar-
shaped cross section is approximated by introducing a series of steps
in the outer guide wall and by dividing the cross section into m fan-
shape regions. Thus, the problem is reduced to one of a multiple-
step waveguide and can be solved by introducing the angular param-
eter o; for the individual regions. The radial boundary conditions
require a combination of Bessel functions of noninteger order for
each region. The common boundaries between regions give m in-
tegral equations that represent the total power in one region trans-
ferred into the next region. The integral equations are solved ap-
proximately by solving only the first terms of an infinite series ex-
pansion of the tangential electric field at the common boundary. The
solution of the m-stepped waveguide results in a system of 2m
equations containing 2m unknowns: the cutoff wave number 3,, the
order of the Bessel function p;, and the angular parameter «i. A suc-
cessive approximation method is applied to obtain the cutotf
wavelength. The calculated value is in close agreement with experi-
mental results.

I. INTRODUCTION

N 1959 a new microwave transmission line, the

“lunar line,” was developed at The Boeing Airplane

Company. The lunar line is an eccentric version of
Schelkunoff’s coaxial cylinders with a radial baffle! and
is formed by two eccentric circular metal tubes which
are either connected with a metal bar or are tangential
to each other (Figs. 1 and 2). The cutoff frequency of
the lunar line is lower than that of circular or coaxial
waveguides with the same outside diameter, propagat-
ing TEy; mode. Its low impedance and wide bandwidth
characteristics may make it useful as a transmission
line, a filter, a cavity, or a feeder {for an array of slot an-
tennas. -

Conventional methods of determining the cutoff
wavelength cannot be applied to lunar line because of
its complicated cross section. In 1958 Iashkin®*~* pro-
posed a new method for determining the dominant cut-
off frequencies of waveguides with triangular and
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Fig. 1-—Photograph of a lunar line.
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Fig. 2—Cross section of a lunar line.

trapezoidal cross sections. He approximated the cross
section with a series of steps and introduced new angu-
lar parameters «; which reduced the problem to a
simple system of equations. However, because his solu-
tion is restricted to a waveguide which can be approxi-
mated by multistepped rectangular regions, it cannot
be applied directly to the lunar line which has circular
boundaries.

In this paper, lashkin’s method is extended to wave-
guides with circular boundaries. A system of equations
involving the cutoff wave number B, the order of the
Bessel function p;, and the angular parameter «;, is ob-
tained and solved approximately. The numerically cal-
culated cutoff wavelength of the lunar line is in close
agreement with experimental results.

II. STATEMENT OF THE PROBLEM

Consider the lunar line with the cross section shown
in Fig. 2. It is assumed that only the dominant TE mode
is propagating, and that the guide wall is perfectly con-
ducting. The z component of the magnetic field, H.,
perpendicular to the cross section of the lunar line,
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satisfles the two-dimensional wave equation
oH,
(V2 + BHH, = 0 o = 0 on the boundary, (1)
n

where ¥/, is the gradient operator transverse to the z
axis, 8. is the cutoff wave number, and the cutoff
wavelength is given by A= (27/8.).

I1T. APPROXIMATION BY MULTISTEPPED REGIONS

With conventional methods, it is not possible to ob-
tain an exact solution for (1) when-it pertains to the
Iunar shaped region shown in Fig. 2. An approximate
solution can be obtained by deforming the outer bound-
ary of the cross section into a series of steps (Fig. 3). If
the deformations are not large and have alternate signs,
their effect will be negligible, and the cutoff wave-
length of the original lunar line will be approximately
the same as that of a waveguide with a multistepped
cross section. Thus, the problem is reduced to one of
finding the cutoff wavelength of the multistepped
waveguide. The precision of the calculated cutoff wave-
length depends on the number of steps in the cross sec-
tion.

IV. SortTioN BY MEANS OF THE PARAMETERS «,

The lunar line shown in Fig. 3 is deformed by eighteen
fan-shape regions. Because of their symmetry about
¢ =m, only nine of the eighteen regions must be con-
sidered. For a cylindrical coordinate system, the zth
region is defined by

b1 S b = ¢y
po = p = p

where
i =1, 2, 9

The solution of (1) for each region is®

H. = 2 CinZp_(Bep) cOS pin(dp — atin), (2)

n=1

where p is the order of the Bessel function and C is the
coefficient of the series solution. The function Z, repre-
sents the following combination of Bessel functions:

Zpin (66[’) = ]pm /(IBCPO)Ame (iBCP) - vain/(BCPO)JPm (BGP) . (3)

Application of the bou.ndary condition yields

oH..,

=0, or 2, '(Bp) = 0 @
dp oy,

5 N, Marcuvitz, “Waveguide Handbook,” McGraw-Hill Book
Co., Inc., New York, N. Y., pp. 66-80; 1951.
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p0=0.8125 inches
p; =length from center o to outside of ith fan-shape region
o

p1=0.98 inches o= 20

p2=1.04 inches da= 40°
p3=1.12 inches ¢3= 600
p4=1.23 inches ¢y= 80°
ps=1.36 inches @5 =100°
ps=1.53 inches $e=120°
p1=1.68 inches ¢r=140°
ps=1.81 inches $s=160°
pe=1.86 inches $9=180°

Fig. 3—Cross section of an 18-stepped form of a lunar line.

and
0H,,
=0, so ap=0, (5)
I lg=0
The fields must be continuous across the com-

mon boundary between the ¢ and the 74-1 regions
(pe=p=pi, p=0); thus

Z Cianin(ﬁcP) Ccos Pin(d’i - ain)

n=1

= 2 ClirnnZotann(Bep) €08 pirnnlds — aisnn]  (6)

n=1

and

i 1
Z Cm - Pianin (ﬁcp) sin pin(¢i - am)
n=1 p

i 1
= 3 Ciornm— P ZGr0.Bep) SN P isnynldi — aipyn)
n=1 P

= ®4(p). (M

The unknown function ®,(p) is the radial electric field
of the ith region. Expressed in a series form, ®;(p) is

& Zy,.(Bep)
q’z(P) = Z Dy, : p_p .
n=1

(8)

The first approximation may be obtained by taking the
first term of the expansion

Zpin(igcp) .

®,(p) = Da 9
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The function Z,_ has the following properties:®

& dp
f Zp (ﬁcp)Zpiv(ﬁcp) —_— = 0, for n # v, (10)
%0 n o
2, N dp 1
["2,260% =11, 60~ 1, 0],
Po p 2Pin
for n = ». (11)

The functions Z, are orthogonal in <th region. This
orthogonality property can be used to determine Ci,
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Substituting (9) and (14) into (15) and integrating
gives

cot Pil(d)z - azl)

[zm ¢ _[pu ¢
Gpgr ) (00)]

cot P(H—l)n[‘bl - au-{—l)nJ

I
Ms

1 [Ip(zﬂ),,(PH-l) - ]p<1+1)n(l’0)]

n

]

7 2
and Ciyn. from (7) in terms of the integral involving } )’IiﬂcpzZle(Bcpz)Z ‘“(l“)"('e”pl)j' } . (16)
the ®(p) function. Thus \ (P)? — P 4100
P
) R NOYARCEX
Cin = — 2 , (12)
Sin pin(¢ — ain) [Ipm (o) — Ipin (PO)]
P+l
2 f ¢1+1<E)Zp(1+1)n(ﬁcg)dg
C(z Nn = N 2 ‘ (13)
v 1sin purnald — @l {Ip(m)" lpein] — Ip(m)“(m)}
Substituting Ci, and C¢iyy. into (6) and simplifying
vields the following integral equation:
223
L Ot — e [ 0©Z, (697, Ged
Z " po
n=1 Ipm (pz) - [pin (Pﬂ)
Pi+1
. cot P(H—l)n[d)l - a(z+1)n]f (I)Z-H@:)Zp(1“)”(Bcg)zp(lﬂ)n(ﬂcp)dg
=2 z : (14)
n=1 Ip(l+1)n(p‘+1) - Ip(i+1)n(p0)
The limits of the right side of the integral in (14) are Between region 9 and 10, (16) is reduced to
Po—pis1, but at ¢ =¢; and at p;=<p =p.41, the function
®(¢) =90H,/d0n=0. Therefore the limits change to cot po1(pe — as1)
© ot ¢ T Ly (00) — Iy ()] =0, (17)
PO—Pye (2p91)? 91 91

Eq. (14) is an integral equation for the unknown
function ®(¢) and insures the continuity of the z com-
ponent of the magnetic field at the boundary. There-
fore, the unknown functions ®,(¢) and ®.;(¥) are equal
at the common boundary, and the function ®;(&) is
used for a small region.

The equation which determines the cutoff wave num-
ber can be obtained by multiplying both sides of (14)
by ®.(p) and by integrating over the boundary p, to p..
Since ®;(p) is the tangential electric field and both
sides of (14) are the g component of the magnetic field,
this procedure insures that the total power of the sth
region will be transferred into (¢2-+1)th region, that is

f " S0 . ()dp — f S Heo(0)dp. (15)

¢ G. N. Watson, “A Treatise on the Theory of Bessel Functions,”
Cambridge University Press, Cambridge, Eng., p. 135; 1958,

since
po = pro, and Z'p (Bepe) = Z'p (Bepro) = 0.
Substituting ¢o=7 into (17) gives

T
po(r — ag1) = 5 or

(18)

gy = W —

2p91

At the boundary ¢ =m, the field E«dH,/pd¢ is sym-
metric and the field H. is zero. Thus, for the region
represented in Fig. 3, a system of equations is obtained
which consists of nine equations of type (4), eight
equations of type (16), and one equation of type (18).
Generally it is not possible to solve these equations be-
cause an infinite number of ai, and pi, must be deter-
mined. However, it is shown in Section V that (4) ad-
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mits only one positive real root 1, and the rest of the
roots are complex. The parameters p;; and a4 represent
the dominant TEy; propagating mode. Therefore, an ap-
proximate solution is obtained by neglecting all of the
nonpropagating modes. This approximation reduces the
series in (16) to one term. Thus, eighteen equations of
type (4), (16) and (18) contain eighteen unknown quan-
tities B, o, * * - ay, (drop the subscript one of a;1) and
fu, © -+ Pa.

To solve for 8., assume an appropriate value of 8.
and substitute this value into (4), (16) and (18) for cal-
culating «y. Two ay parameters are obtained for each
B, value. When the assumed value of 8. increases, the
value of a from (16) decreases and the value of a, from
(18) increases. Therefore, the true value of 8, can be de-
termined graphically from the point where the value of
these two ay are equal.

V. SaMmpLE CALCULATION OF THE CUTOFF
WAVELENGTH OF A LUNAR LINE

In order to choose some appropriate value of 3, a
simplified case is first considered. Then the value of §,,
is varied near the chosen value to obtain the true ..

In the deformation from the lunar-line cross section,
to a one-stepped, fan-shape region, the approximate
cutoff wave number may be chosen as

2
2(Paverage X 1900)

The fan-shape is stretched to form a rectangular wave-
guide, and the dimension @ is paverage X190°; therefore,
the cutoff wavelength is 2a.

Substituting 8,=0.70, into nine equations of type
(4) and using the Bessel Function recurrence relations,
gives

Be 0.70. (19)

Zpin,(ﬁcpl) = i‘{ []pm—1<:86P0) - inn-i—l(ﬂcﬂo)J
: [Arpin~1(ﬁcpz) - Npin—i-l(ﬁcpi)]
- [Npm—l(ﬁcpo) - Npm+1(ﬁr'cpo)]

[7p 1(Beps) — Tp +1(Bep) ]}, (20)
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The Z,/ (Bp.) functions are symmetrical with respect
to the p;=0; therefore, the equation Z," (B.p:) =0 has
one positive root, and must have an equal negative root.
Since H, is symmetric with respect to the p;=0, only
the positive root pi, needs to be considered.

The values 8,00 and B.,0; are too small to be consid-
ered with the ordinary approximate formula for the
large argument Bessel Functions. However, because the
series form of these Bessel Functions converges rather
rapidly, the finite terms are used for approximate com-
putations to obtain the roots p; and the parameters o;
of each 8, value.

The graphical method is used to plot the function
Z,, (Bps) against p; (Fig. 4 shows 4 Z,,'(B.p1) vs the P,
curve) and the root, pu, of (4) is 0.625. Similarly the

roots pa - - - pa can be obtained. They are
P = 0.625 per = 0.803
po1 = 0.648 pn = 0.849
pa = 0.673 ps1 = 0.886
par = 0.708 por = 0.899.
ps1 = 0.7501 (21)

The curve in Fig. 4 shows only one positive real root.
It is difficult to find complex roots of the equation
Z,. (Bep.) =0 for a small argument. However, the high
modes of the field, H,, are assumed to attenuate very
quickly. Substituting §,, c1=0 and nine p; roots into
eight equations of type (16), as through « are obtained:
ay is 1.1832. If pg, is substituted into (18), the result,
oy =1.3943, is different from that obtained by comput-
ing equations of type (16). Therefore, the value 8,=0.70
does not satisfy this system of eighteen equations. How-
ever, if it is assumed that 8.=0.64 and 8,=0.67, and «
parameters are computed using the same procedure as
that used to compute 8,=0.70, the data listed in Table
I result.

When (8,=0.67, the ay computed from equations of
type (16) and that computed from (18) are close, there-
fore 8,=0.67 satisfies the system of eighteen equations.
However, other lower values of 8, have been computed
in which the two «y parameters are different. Therefore,

TABLE 1
COMPUTING a1 PARAMETER
B:=0.64 8,=0.67 B.=0.70
7 ﬁcpi 6@1 [£29 Bbpb ﬁzl (243 ﬁcp@ P 243
0 0.52 0.544375 0.56875
1 0.6272 0.571 0 0.6566 0.599 0 0.686 0.625 0
2 0.6656 0.592 0.1365 0.6968 0.621 0.1087 0.728 0.648 0.1225
3 0.7168 0.617 0.2673 0.7504 0.642 0.1735 0.784 0.673 0.2234
4 0.7872 0.619 0.4371 0.8241 0.677 0.4787 0.861 0.708 0.4394
5 0.8704 0.687 0.6591 0.9112 0.718 0.7534 0.952 0.7501 0.6874
6 0.9792 0.735 0.9180 1.0251 0.771 1.0161 1.071 0.803 0.9342
7 1.0752 0.777 1.1512 1.1256 0.814 1.1657 1.176 0.849 1.1096
8 1.1584 0.813 1.3611 1.2127 0.851 1.2935 1.267 0.886 1.1872
9* 1.1904 0.829 1.5744 1.2462 0.863 1.3363 1.302 0.899 1.1832
97 1.2468 1.32144 1.3943

* ag computing from tvpe (16) equations.
t ag computing from (18).
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42pﬂ (ﬁc pl)

o 2 4 6 8 1o 12

Bc=0.70
p11=0.625

Fig. 4—4Z'p1u(Bepr) vs 1 curve

B:.=0.67 is the dominant cutoff approximate wave
number of the experimental lunar line. The calculated
value is in close agreement with experimental results.

VI. EXPERIMENTAL RESULTS

The lunar line used in the experiment was formed by
two eccentric circular metal tubes, connected with a
metal bar (Fig. 1). The waveguide wavelength of the
lunar line was measured by the slotted section, audio-
modulated signal source method. A crystal detector
from an HP Model 805B slotted line was used to meas-
ure the free space wavelength N\. The crystal detector
from the lunar line was used to measure the waveguide
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wavelength A,. The distance between two adjacent
minimum positions indicated on the VSWR meter is
equal to half a wavelength. The mean value \,/2 was
taken as the average of four such readings. The ends of
the lunar line were terminated in adjustable short cir-
cuits. Care was taken in adjusting the position of these
short circuits to obtain a resonant standing wave distri-
bution within the lunar line cavity at the measuring fre-
quency.

The experimental result of an average cutoff wave-
length of the lunar line is 9.577 inches, the cutoff wave
number £, is 0.6561.

Using the same method, the waveguide wavelengths
of circular and of coaxial waveguides were measured for
comparison.

For a circular waveguide of radius, ¢ =1.435 inches,
a waveguide wavelength A, =8.52 inches was measured
at a frequency of 2800 Mc. The experimental cutoff
wavelength A, is 4.84 inches. For a coaxial waveguide,
whose outer conductor radius ¢ is 1.435 inches and
whose inner conductor radius b is 0.8125 inch, a wave-
guide wavelength of \,=8.56 inches was measured at a
frequency of 2200 Mc. The experimental cutoff wave-
length A, is 6.8 inches. The experimental results are in
close agreement with the calculated value of cutoff
wavelengths for circular and coaxial waveguides. The
dominant cutoff wavelength of a lunar line is lower
than that of circular and coaxial waveguides having the
same outside diameter.
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